4.8 Article

Neuronal octopamine signaling regulates mating-induced germline stem cell increase in female Drosophila melanogaster

Journal

ELIFE
Volume 9, Issue -, Pages -

Publisher

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.57101

Keywords

-

Categories

Funding

  1. Japan Agency for Medical Research and Development [19gm1110001h0003, 17gm6010011h0001]
  2. Takeda Science Foundation
  3. Japan Society for the Promotion of Science [KAKENHI 15J00652, KAKENHI 2625001, KAKENHI 17H01378, KAKENHI 19H05240, KAKENHI 18J20572]

Ask authors/readers for more resources

Stem cells fuel the development and maintenance of tissues. Many studies have addressed how local signals from neighboring niche cells regulate stem cell identity and their proliferative potential. However, the regulation of stem cells by tissue-extrinsic signals in response to environmental cues remains poorly understood. Here we report that efferent octopaminergic neurons projecting to the ovary are essential for germline stem cell (GSC) increase in response to mating in female Drosophila. The neuronal activity of the octopaminergic neurons is required for mating-induced GSC increase as they relay the mating signal from sex peptide receptor-positive cholinergic neurons. Octopamine and its receptor Oamb are also required for mating-induced GSC increase via intracellular Ca2+ signaling. Moreover, we identified Matrix metalloproteinase-2 as a downstream component of the octopamine-Ca2+ signaling to induce GSC increase. Our study provides a mechanism describing how neuronal system couples stem cell behavior to environmental cues through stem cell niche signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available