4.6 Article

IFN-alpha confers epigenetic regulation of HBV cccDNA minichromosome by modulating GCN5-mediated succinylation of histone H3K79 to clear HBV cccDNA

Journal

CLINICAL EPIGENETICS
Volume 12, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s13148-020-00928-z

Keywords

Interferon-alpha; HBV; HBV cccDNA minichromosome; Histone succinylation; GCN5; Epigenetic regulation

Funding

  1. National Natural Science Foundation of China [31670769]

Ask authors/readers for more resources

Background: Hepatitis B virus covalently closed circular DNA (HBV cccDNA) is assembled by histones and non-histones into a chromatin-like cccDNA minichromosome in the nucleus. The cellular histone acetyltransferase GCN5, displaying succinyltransferase activity, is recruited onto cccDNA to modulate HBV transcription in cells. Clinically, IFN-alpha is able to repress cccDNA. However, the underlying mechanism of IFN-alpha in the depression of cccDNA mediated by GCN5 is poorly understood. Here, we explored the effect of IFN-alpha on GCN5-mediated succinylation in the epigenetic regulation of HBV cccDNA minichromosome. Results: Succinylation modification of the cccDNA minichromosome has been observed in HBV-infected human liver-chimeric mice and HBV-expressing cell lines. Moreover, histone H3K79 succinylation by GCN5 was identified in the system. Interestingly, the mutant of histone H3K79 efficiently blocked the replication of HBV, and interference with GCN5 resulted in decreased levels of HBV DNA, HBsAg, and HBeAg in the supernatant from de novo HBV-infected HepaRG cells. Consistently, the levels of histone H3K79 succinylation were significantly elevated in the livers of HBV-infected human liver-chimeric mice. The knockdown or overexpression of GCN5 or the mutant of GCN5 could affect the binding of GCN5 to cccDNA or H3K79 succinylation, leading to a change in cccDNA transcription activity. In addition, Southern blot analysis validated that siGCN5 decreased the levels of cccDNA in the cells, suggesting that GCN5-mediated succinylation of histone H3K79 contributes to the epigenetic regulation of cccDNA minichromosome. Strikingly, IFN-alpha effectively depressed histone H3K79 succinylation in HBV cccDNA minichromosome in de novo HepG2-NTCP and HBV-infected HepaRG cells. Conclusions: IFN-alpha epigenetically regulates the HBV cccDNA minichromosome by modulating GCN5-mediated succinylation of histone H3K79 to clear HBV cccDNA. Our findings provide new insights into the mechanism by which IFN-alpha modulate the epigenetic regulation of HBV cccDNA minichromosome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available