4.6 Article

Partial Amorphization of Cellulose through Zinc Chloride Treatment: A Facile and Sustainable Pathway to Functional Cellulose Nanofibers with Flame-Retardant and Catalytic Properties

Journal

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
Volume 8, Issue 36, Pages 13576-13582

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.0c03492

Keywords

Molten salt hydrate; Cellulose fibrillation; Chemical modification; Energy saving; Nanocellulose; Ionic liquids; Cellulose swelling

Funding

  1. Global Leader Program for Fiber Renaissance of Shinshu University, Japan
  2. Austrian Biorefinery Center Tulln (ABCT)

Ask authors/readers for more resources

This work established an energy-saving and straight-forward treatment of cellulosic pulp to obtain functional cellulose nanofibers equipping them at the same time with catalytic activity and flame-retardant properties. For this purpose, dried cellulose pulp was mixed with a recyclable swelling agent, ZnCl2 hydrate, at room temperature. The mild treatment affected the crystal structure through a partial amorphization, yielding a mix of native cellulose I and regenerated cellulose II. This treatment tremendously facilitated the fibrillation into a cellulose nanofiber (CNF) network. In comparison to fibrillated cellulose from nontreated pulp, the ZnCl2-treated counterpart featured higher viscosity, film transparency, better mechanical properties, and higher heat stability. Films produced from these nanofibers showed flame-retardant properties without any further modification. The ZnCl2-CNF showed also high reactivity in fiber surface acetylation and allowed a fast and efficient reaction while using very mild conditions. All in all, we propose a simple and resource-efficient cellulose treatment to obtain a nanostructured cellulose. These nanofibrils are decorated with ZnCl2 which imposes flame-retardant properties and confined catalytic activity at the fibril surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available