4.7 Article

Normal Faulting in the 2020 Mw 6.2 Yutian Event: Implications for Ongoing E-W Thinning in Northern Tibet

Journal

REMOTE SENSING
Volume 12, Issue 18, Pages -

Publisher

MDPI
DOI: 10.3390/rs12183012

Keywords

2020 Yutian earthquake; InSAR coseismic displacement; interseismic GPS; northern Tibet extension

Funding

  1. National Natural Science Foundation of China [41704005, 41974004]
  2. National KeyR&DProgram of China [2018YFC1503604, 2019YFC1509204]
  3. Fundamental Research Funds for National Universities [CUGL180410]
  4. National Key Basic Research Development Program (973 Program) [2013CB733304]

Ask authors/readers for more resources

Extensional earthquakes in the Tibetan Plateau play an important role in the plateau's orogenic evolution and cause heavy seismic hazard, yet their mechanisms remain poorly known, in particular in harsh northern Tibet. On 25 June 2020, a Mw 6.2 earthquake struck Yutian, Xinjiang, offering us a rare chance to gain insights into its mechanism and implications in the Tibetan extension. We used both descending and ascending Sentinel-1 images to generate coseismic deformation associated with this event, which indicates a typical extensional mechanism with a maximum subsidence displacement of 25 cm and minor uplift. The causative fault constrained with interferometric synthetic aperture radar (InSAR) data based on a finite fault model suggests that the fault plane has a strike of 186.4 degrees and westward dip of 64.8 degrees, and the main rupture is concentrated at a depth of 3.6-10.8 km with a peak slip of 0.85 m. Our source model indicates that the 2020 Yutian event ruptured an unknown high-angle blind normal fault with N-S striking. The total released geodetic moment yields 2.69 x 10(18) N center dot m, equivalent to Mw 6.23. We used dense interseismic global positioning system (GPS) measurements to reveal an approximate 7 mm/yr extensional motion in the Yutian region, but it still does not seem large enough to support high local seismicity for normal events within 12 years, i.e., Mw 7.1 in 2008, Mw 6.2 in 2012, and this event in 2020. Combined with Coulomb stress change modeling, we speculate that the seismicity in Yutian is related to the lower lithospheric dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available