4.7 Article

Cyclic Peptide Inhibitors of the Tsg101 UEV Protein Interactions Refined through Global Docking and Gaussian Accelerated Molecular Dynamics Simulations

Journal

POLYMERS
Volume 12, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/polym12102235

Keywords

molecular dynamics; Tsg101 UEV protein; Gaussian accelerated molecular dynamics simulation; cyclic peptides

Funding

  1. Kaohsiung Medical University, Taiwan [KMU-TC108A03-1]
  2. Ministry of Science and Technology, Taiwan [109-2113-M-037-015-]

Ask authors/readers for more resources

Tsg101 UEV domain proteins are potential targets for virus infection therapy, especially for HIV and Ebola viruses. Peptides are key in curbing virus transmission, and cyclic peptides have a greater survival time than their linear peptides. To date, the accurate prediction of cyclic peptide-protein receptors binding conformations still is challenging because of high peptide flexibility. Here, a useful approach combined the global peptide docking, Gaussian accelerated molecular dynamics (GaMD), two-dimensional (2D) potential of mean force (PMF), normal molecular dynamics (cMD), and solvated interaction energy (SIE) techniques. Then we used this approach to investigate the binding conformations of UEV domain proteins with three cyclic peptides inhibitors. We reported the possible cyclic peptide-UEV domain protein binding conformations via 2D PMF free energy profiles and SIE free energy calculations. The residues Trp145, Tyr147, and Trp148 of the native cyclic peptide (CP1) indeed play essential roles in the cyclic peptides-UEV domain proteins interactions. Our findings might increase the accuracy of cyclic peptide-protein conformational prediction, which may facilitate cyclic peptide inhibitor design. Our approach is expected to further aid in addressing the challenges in cyclic peptide inhibitor design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available