4.7 Article

Herpes simplex virus type 1 infection leads to neurodevelopmental disorder-associated neuropathological changes

Journal

PLOS PATHOGENS
Volume 16, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1008899

Keywords

-

Funding

  1. National Natural Science Foundation of China [31871018]
  2. National Science and Technology Major Project [2018ZX10733403]

Ask authors/readers for more resources

Neonatal herpes simplex virus type 1 (HSV-1) infections contribute to various neurodevelopmental disabilities and the subsequent long-term neurological sequelae into the adulthood. However, further understanding of fetal brain development and the potential neuropathological effects of the HSV-1 infection are hampered by the limitations of existing neurodevelopmental models due to the dramatic differences between humans and other mammalians. Here we generated in vitro neurodevelopmental disorder models including human induced pluripotent stem cell (hiPSC)-based monolayer neuronal differentiation, three-dimensional (3D) neuroepithelial bud, and 3D cerebral organoid to study fetal brain development and the potential neuropathological effects induced by the HSV-1 infections. Our results revealed that the HSV-1-infected neural stem cells (NSCs) exhibited impaired neural differentiation. HSV-1 infection led to dysregulated neurogenesis in the fetal neurodevelopment. The HSV-1-infected brain organoids modelled the pathological features of the neurodevelopmental disorders in the human fetal brain, including the impaired neuronal differentiation, and the dysregulated cortical layer and brain regionalization. Furthermore, the 3D cerebral organoid model showed that HSV-1 infection promoted the abnormal microglial activation, accompanied by the induction of inflammatory factors, such as TNF-alpha, IL-6, IL-10, and IL-4. Overall, our in vitro neurodevelopmental disorder models reconstituted the neuropathological features associated with HSV-1 infection in human fetal brain development, providing the causal relationships that link HSV biology with the neurodevelopmental disorder pathogen hypothesis. Author summary HSV-1 is one of the most prevalent human pathogens that can spread into the fetal central nervous system by maternal-fetal transmission, and thus resulting in long-term neurological sequelae in adult, including cognitive dysfunction and learning disabilities. However, there is a very limited progress in understanding the role of HSV-1 on human fetal brain development due to limited access to fetal human brain tissue as well as the limitations of existing neurodevelopmental and infection models. Here, we generated the in vitro neurodevelopmental disorder models including hiPSC-based monolayer neuronal differentiation, three-dimensional (3D) neuroepithelial bud, and 3D cerebral organoid to study the neurodevelopmental disorder-associated neuropathological changes with HSV-1 infection in human fetal brain development. Our results revealed that HSV-1 infection led to impaired neural differentiation and dysregulated neurogenesis in the fetal neurodevelopment. Additionally, HSV-1 infection impaired neuronal differentiation and dysregulated brain regionalization in our cerebral organoid model. Furthermore, the cerebral organoid model showed that HSV-1 infection led to the abnormal microglial proliferation and activation, accompanied by the induction of inflammatory factors including TNF-alpha, IL-6, IL-10, and IL-4. Taken together, our study provides novel evidence that HSV-1 infection impaired human brain development and contributed to neurodevelopmental disorder pathogen hypothesis, and would have implications for raising the therapeutic opportunities for targeting of viral reservoirs relevant to neurodevelopmental disorder.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available