4.3 Article

Wear resistance of maraging steel developed by direct metal laser sintering

Journal

MATERIALS EXPRESS
Volume 10, Issue 7, Pages 1079-1090

Publisher

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/mex.2020.1715

Keywords

Direct Metal Laser Sintering; Wear Characteristics; Maraging Steel; Additive Manufacturing; SEM; Response Surface Method

Funding

  1. Deanship of Scientific Research at King Khalid University [R.G.P. 2/11/39]

Ask authors/readers for more resources

This work presents wear study on maraging steel developed by additive manufacturing using Direct Metal Laser Sintering, utilizing a laser beam of high-power density for melting and fusing the metallic powders. Short aging treatment was given to the specimen prior to the wear tests. The density and the hardness of the 3D printed maraging steel were found to be better than the homogenized-aged 18Ni1900 maraging steel. The wear resistance is an important aspect that influences the functionality of the components. The wear tests in dry condition were performed on maraging steel on pin/disc standard wear testing machine. The design of experiments was planned and executed based on response surface methodology. This technique is employed to investigate three influencing and controlling constraints namely speed, load, and distance of sliding. It has been observed that sliding speed and normal load significantly affects the wear of the specimen. The statistical optimization confirms that the normal load, sliding distance, and speed are significant for reducing the wear rate. The confirmation test was conducted with a 95% confidence interval using optimal parameters for validation of wear test results. A mathematical model was developed to estimate the wear rate. The experimental results were matched with the projected values. The wear test parameters for minimum and maximum wear rate have been determined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available