4.7 Article

Atmospheric Pathways and Distance Range Analysis of Castanea Pollen Transport in Southern Spain

Journal

FORESTS
Volume 11, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/f11101092

Keywords

Castanea; chestnut; pollen; pollination; phenology; aerobiology; backward trajectories

Categories

Funding

  1. Ministry of Economy and Knowledge of the Andalusian Regional Government through the European Regional Development Funds (ERDF) [1260464]

Ask authors/readers for more resources

The sweet chestnut (Castanea sativa Mill.) is the only native species of this genus in Europe, where it faces various threats that are causing a severe decrease in populations, with the resulting loss of genetic diversity. In the Iberian Peninsula, it is of high economic and ecological importance, being well represented, especially in northern areas, whilst it is limited to isolated populations in medium-range mountains in southern Spain (Andalusia region). Taking advantage of this fragmented distribution, this study analyzes the dynamics of atmospheric transport of Castanea pollen through Andalusia region in order to obtain a better understanding of the pollination pathways as a key aspect of the floral biology of this partially anemophilous species. The aerobiological characteristics of this species are also of special interest since its pollen has been recognized as allergenic. Pollen transport pathways were studied by applying back-trajectories analysis together with aerobiological, phenological, land cover, and meteorological data. The results reveal that airborne Castanea pollen concentrations recorded in the city of Cordoba, in the center of Andalusia region, reach medium- and even long-range distances. The backward-trajectory analysis indicates that most of the pollen data detected outside the Castanea flowering season were related to westerly slow and easterly airflows. Furthermore, some of the case studies analyzed indicate the presence of southerly airflow patterns, which could influence medium- and long-range transport events from chestnut populations further south, even from those located in north African mountains. The integrated analysis of the results offers us better knowledge of the cross-pollination pathways of this endangered species, which help us to understand its genetic flows, as a basis for designing conservation strategies for this highly fragmented species in southern Spain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available