4.7 Article

Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti3C2Tx) Composite Hydrogel as Wound Dressing for Accelerating Skin Wound Healing under Electrical Stimulation

Journal

ADVANCED HEALTHCARE MATERIALS
Volume 9, Issue 19, Pages -

Publisher

WILEY
DOI: 10.1002/adhm.202000872

Keywords

electrical stimulation; electroactive hydrogels; regenerated bacterial cellulose; MXene hydrogels; wound dressings; wound healing

Funding

  1. National Natural Science Foundation of China [21774039, 51973076]
  2. National Key Research and Development Program of China [2018YFE0123700]
  3. Fundamental Research Funds for the Central Universities [2020kfyXJJS035, WUT2018IVB006]
  4. Analytical and Testing Centre at the HUST

Ask authors/readers for more resources

Traditional wound dressings mainly participate in the passive healing processes and are rarely engaged in active wound healing by stimulating skin cell behaviors. Electrical stimulation (ES) has been known to regulate skin cell behaviors. Herein, a series of multifunctional hydrogels based on regenerated bacterial cellulose (rBC) and MXene (Ti3C2Tx) are first developed that can electrically modulate cell behaviors for active skin wound healing under external ES. The composite hydrogel with 2 wt% MXene (rBC/MXene-2%) exhibits the highest electrical conductivity and the best biocompatibility. Meanwhile, the rBC/MXene-2% hydrogel presents desired mechanical properties, favorable flexibility, good biodegradability, and high water-uptake capacity. An in vivo study using a rat full-thickness defect model reveals that this rBC/MXene hydrogel exhibits a better therapeutic effect than the commercial Tegaderm film. More importantly, in vitro and in vivo data demonstrate that coupling with ES, the hydrogel can significantly enhance the proliferation activity of NIH3T3 cells and accelerate the wound healing process, as compared to non-ES controls. This study suggests that the biodegradable and electroactive rBC/MXene hydrogel is an appealing candidate as a wound dressing for skin wound healing, while also providing an effective synergistic therapeutic strategy for accelerating wound repair process through coupling ES with the hydrogel dressing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available