4.7 Article

Characterizing the evolution life cycle of the Sunkoshi landslide in Nepal with multi-source SAR data

Journal

SCIENTIFIC REPORTS
Volume 10, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41598-020-75002-y

Keywords

-

Funding

  1. National Key RAMP
  2. D Program of China [2017YFB0502700]
  3. National Natural Science Foundation of China [41774006, 41702376]
  4. Japan Aerospace Exploration Agency (JAXA) through the ALOSRA6 project [PI 3248]
  5. Japan Aerospace Exploration Agency (JAXA) through EO-RA2 project [PI ER2A2N008]
  6. German Aerospace Center (DLR) through the TanDEM-X AO project [NTI_INSA6712]
  7. European Space Agency (ESA) through the Sentinels Scientific Data Hub under the framework of Sino-EU Dragon Project [32278]

Ask authors/readers for more resources

A catastrophic landslide disaster happened on 2 August 2014 on the right bank of Sunkoshi River in Nepal, resulting in enormous casualties and severe damages of the Araniko highway. We collected multi-source synthetic aperture radar (SAR) data to investigate the evolution life cycle of the Sunkoshi landslide. Firstly, Distributed Scatterers SAR Interferometry (DS-InSAR) technology is applied to analyze 20 ALOS PALSAR images to retrieve pre-disaster time-series deformation. The results show that the upper part, especially the top of the landslide, has long been active before collapse, with the largest annual LOS deformation rate more than -30 mm/year. Time series deformations measured illustrate that rainfall might be a key driving factor. Next, two pairs of TerraSAR-X/TanDEM-X bistatic data are processed to identify the landslide affected area by intensity change detection, and to generate pre-and post-disaster DSMs. Surface height change map showed maximum values of -150.47 m at the source region and 55.65 m in the deposit region, leading to a debris volume of 5.4785 +/- 0.6687 million-m(3). Finally, 11 ALOS-2 PALSAR-2 and 82 Sentinel-1 SAR images are analyzed to derive post-disaster annual deformation rate and long time series displacements of the Sunkoshi landslide. The results illustrated that the upper part of the landslide were still in active deformation with the largest LOS displacement velocity exceeding-100 mm/year.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available