4.7 Article

Synthesis of polypyrrole/nitrogen-doped porous carbon matrix composite as the electrode material for supercapacitors

Journal

SCIENTIFIC REPORTS
Volume 10, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-020-72392-x

Keywords

-

Funding

  1. national natural science foundation of China [21504010]
  2. Open project of engineering research center of active material biotechnology, Ministry of Education, Chongqing Normal University [AS201609]

Ask authors/readers for more resources

Polypyrrole complex nitrogen-doped porous carbon matrix (PPy/N-PCM) was synthesized by a simple two-step method. Firstly, graphene oxide was prepared by the modified Hummers method. Secondly, Polypyrrole was compounded on the graphene oxide substrate, and the carbon matrix with a high specific surface area was obtained through high-temperature carbonization and KOH activation, and polypyrrole was used as a nitrogen source for the final nitrogen-doped composite material. The structure characterization of the carbon matrix and the final composite material shows that the carbon matrix surface has obvious porous structure, and the polypyrrole nanospheres grow uniformly on the porous carbon matrix surface. The electrochemical evaluation show that the prepared PPy/N-PCM has excellent supercapacitor performance, and its specific capacitance can reach 237.5 F g(-1). When the current density reaches 10 A g(-1), it has good cycle stability (the capacitance retention after 1000 charge and discharge is 88.53% of the initial capacitance value, which is better than pure PPy-60.76% and PPy/rGO-C-71.84%). The excellent capacitance performance, good-looking micro-morphology and simple synthesis method of the PPy/N-PCM provide the possibility for its commercialization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available