4.7 Article

Pre-diagnostic biomarkers of type 2 diabetes identified in the UAE's obese national population using targeted metabolomics

Journal

SCIENTIFIC REPORTS
Volume 10, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41598-020-73384-7

Keywords

-

Funding

  1. Ministry of Health and Prevention
  2. Ministry of Presidential Affairs, UAE

Ask authors/readers for more resources

Currently, type 2 diabetes mellitus (T2DM) and obesity are major global public health issues, and their prevalence in the United Arab Emirates (UAE) are among the highest in the world. In 2019, The UAE diabetes national prevalence was 15.4%. In recent years there has been a considerable investigation of predictive biomarkers associated with these conditions. This study analysed fasting (8 h) blood samples from an obese, normoglycemic cohort and an obese, T2DM cohort of UAE nationals, employing clinical chemistry analysis, 1D H-1 NMR and mass spectroscopy (FIA-MS/MS and LC-MS/MS) techniques. The novel findings reported for the first time in a UAE population revealed significant differences in a number of metabolites in the T2DM cohort. Metabolic fingerprints identified by NMR included BCAAs, trimethylamine N-oxide, beta -hydroxybutyrate, trimethyl uric acid, and alanine. A targeted MS approach showed significant differences in lysophosphatidylcholines, phosphatidylcholines, acylcarnitine, amino acids and sphingomyelins; Lyso.PC.a.C18.0, PC.ae.C34.2, C3.DC..C4.OH, glutamine and SM.C16.1, being the most significant metabolites. Pearson's correlation studies showed associations between these metabolites and the clinical chemistry parameters across both cohorts. This report identified differences in metabolites in response to T2DM in agreement with many published population studies. This contributes to the global search for a bank of metabolite biomarkers that can predict the advent of T2DM and give insight to its pathogenic mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available