4.7 Article

Lower Postprandial Thermogenic Response to an Unprocessed Whole Food Meal Compared to an Iso-Energetic/Macronutrient Meal Replacement in Young Women: A Single-Blind Randomized Cross-Over Trial

Journal

NUTRIENTS
Volume 12, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/nu12082469

Keywords

meal replacement; nutritionally engineered food; ultra-processed food

Funding

  1. Health & Human Physiological Sciences Department

Ask authors/readers for more resources

In contrast to ultra-processed foods that are associated with increased weight gain and obesity risk, nutritionally engineered dietary supplements, including meal replacement (MR) bars and shakes, are generally promoted as healthy. Limited data is available comparing the metabolic and hunger responses of whole food (WF) versus MR meals. The purpose of this study was to directly compare the thermic effect (TEM), respiratory exchange ratio (RER), hunger/taste ratings, and glucose response of two different breakfast meals containing MR and WF products in young healthy women. Eight volunteers completed two iso-caloric (529 kcals)/macronutrient (50% carbohydrates; 26% fat; 24% protein) test meals in a single-blind, randomized crossover design: (1) whole food meal; or (2) meal replacement. TEM was significantly higher following MR compared with WF (percent mean difference: 7.76 +/- 3.78%; absolute mean difference: 0.053 +/- 0.026 kcal/minute,p= 0.048), whereas WF substrate utilization demonstrated lower carbohydrate oxidation (RER) than MR (mean difference: -0.024 +/- 0.008,p= 0.005). No differences existed for blood glucose response and feelings of hunger, desire to eat, and satiety among trials. Consumption of an MR meal increases postprandial thermogenesis and RER compared to a WF meal, which may impact weight control and obesity risk over the long-term.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available