4.6 Article

Addressing H-Material Interaction in Fast Diffusion Materials-A Feasibility Study on a Complex Phase Steel

Journal

MATERIALS
Volume 13, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/ma13204677

Keywords

advanced high-strength steels; hydrogen embrittlement; in-situ testing; scanning electron microscopy; plasma charging

Funding

  1. COMET program within the K2 Center Integrated Computational Material, Process and Product Engineering (IC-MPPE) [859480]
  2. Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK)
  3. Austrian Federal Ministry for Digital and Economic Affairs (BMDW)

Ask authors/readers for more resources

Hydrogen embrittlement (HE) is one of the main limitations in the use of advanced high-strength steels in the automotive industry. To have a better understanding of the interaction between hydrogen (H) and a complex phase steel, an in-situ method with plasma charging was applied in order to provide continuous H supply during mechanical testing in order to avoid H outgassing. For such fast-H diffusion materials, only direct observation during in-situ charging allows for addressing H effects on materials. Different plasma charging conditions were analysed, yet there was not a pronounced effect on the mechanical properties. The H concentration was calculated while using a simple analytical model as well as a simulation approach, resulting in consistent low H values, below the critical concentration to produce embrittlement. However, the dimple size decreased in the presence of H and, with increasing charging time, the crack propagation rate increased. The rate dependence of flow properties of the material was also investigated, proving that the material has no strain rate sensitivity, which confirmed that the crack propagation rate increased due to H effects. Even though the H concentration was low in the experiments that are presented here, different technological alternatives can be implemented in order to increase the maximum solute concentration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available