4.6 Review

Development of Bath Chemical Composition for Batch Hot-Dip Galvanizing-A Review

Journal

MATERIALS
Volume 13, Issue 18, Pages -

Publisher

MDPI
DOI: 10.3390/ma13184168

Keywords

hot-dip galvanizing; batch galvanizing; zinc coatings; galvanizing bath; corrosion resistance

Funding

  1. Silesian University of Technology (Faculty of Transport and Aviation Engineering) [BK-208/RT4/2020]

Ask authors/readers for more resources

Obtaining zinc coatings by the batch hot-dip galvanizing process currently represents one of the most effective and economical methods of protecting steel products and structures against corrosion. The batch hot-dip galvanizing process has been used for over 150 years, but for several decades, there has been a dynamic development of this technology, the purpose of which is to improve the efficiency of zinc use and reduce its consumption and improve the quality of the coating. The appropriate selection of the chemical composition of the galvanizing bath enables us to control the reactivity of steel, improve the drainage of liquid zinc from the product surface, and reduce the amount of waste, which directly affects the quality of the coating and the technology of the galvanizing process. For this purpose, the effect of many alloying additives to the zinc bath on the structure and thickness of the coating was tested. The article reviews the influence of various elements introduced into the bath individually and in different configurations, discusses the positive and negative effects of their influence on the galvanizing process. The current development in the field of the chemical composition of galvanizing baths is also presented and the best-used solutions for the selection and management of the chemical composition of the bath are indicated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available