4.6 Article

Improvement of Performances of the Gypsum-Cement Fiber Reinforced Composite (GCFRC)

Journal

MATERIALS
Volume 13, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/ma13173847

Keywords

gypsum; cement; fly ash; slag; fiber

Funding

  1. RFBR [18-29-24113, 18-03-00352]
  2. Peter the Great St. Petersburg Polytechnic University

Ask authors/readers for more resources

The novelty of this paper lies in the identification of the scientific patterns of the influence of thermal power plant waste (TPPW) on the hydration mechanism and the structure of the gypsum-cement binder (GCB). The classification of raw materials for the production of GCB has been developed taking into account the genesis, which contributes to the prediction of the properties of composites. The features of the hydration phase formation and hardening of GCB have been studied taking into account the chemical, structural and morphological features of fly ash and slag. In addition, the microstructural, morphological, and thermal properties of the cured binders at a 28 day cure were determined. For the first time, scientific data on the properties of gypsum-cement fiber-reinforced composite using TPPW and microfiber have been obtained. The results show that the synergistic effect of gypsum-cement binder, TPPW, and polyamide or basalt microfiber improves the physicomechanical properties of a 28 day cured binder: compressive strength of 20 MPa, flexural strength of 8.9 MPa, and softening coefficient 0.87.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available