4.6 Article

Aerodynamic Performance of an Adaptive GFRP Wind Barrier Structure for Railway Bridges

Journal

MATERIALS
Volume 13, Issue 18, Pages -

Publisher

MDPI
DOI: 10.3390/ma13184214

Keywords

fibre-reinforced polymer; wind barrier; railway bridge; aerodynamic coefficient; wind tunnel experiment; aerodynamics

Funding

  1. National Natural Science Foundation of China [51925808 U1934209]

Ask authors/readers for more resources

Wind barrier structures on railway bridges are installed to mitigate the wind effects on travelling trains; however, they cause additional wind loads and associated aerodynamic effects on the bridge. An innovative concept was developed for a wind barrier structure in this study that used a glass-fibre-reinforced polymer (GFRP) that may deform properly when subjected to a crosswind. Such deformation then allows for wind to pass, therefore reducing the wind loads transferred to the bridge. Wind tunnel experiments were conducted on a 1/40-scale train and bridge models with the proposed GFRP barrier subjected to airflow at different speeds up to 20 m/s. The side-force and overturning-moment coefficients of both the train and the bridge were evaluated to characterise the aerodynamic effects. The results show that favourable side-force and overturning-moment coefficients of the train were provided by wind barriers taller than 10 cm. The aerodynamic coefficients of the train were not significantly affected by the airflow speeds; meanwhile, the overturning-moment coefficient of the bridge decreased with the increase in airflow speed due to smaller wind resistance of the barrier after deformation. A numerical analysis was conducted on both the reduced- and full-scale models of the train-barrier-bridge system and the results supported the findings obtained from the wind tunnel experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available