4.6 Article

Depth-resolved Mueller matrix polarimetry microscopy of the rat cornea

Journal

BIOMEDICAL OPTICS EXPRESS
Volume 11, Issue 10, Pages 5982-5994

Publisher

OPTICAL SOC AMER
DOI: 10.1364/BOE.402201

Keywords

-

Funding

  1. National Science Foundation [DMR 1548924]
  2. Herbert and Nicole Wertheim Professorship Endowment

Ask authors/readers for more resources

Mueller matrix polarimetry (MMP) is a promising linear imaging modality that can enable visualization and measurement of the polarization properties of the cornea. Although the distribution of corneal birefringence has been reported, depth resolved MMP imaging of the cornea has not been archived and remains challenging. In this work, we perform depth-resolved imaging of the cornea using an improved system that combines Mueller matrix reflectance and transmission microscopy together with nonlinear microscopy utilizing second harmonic generation (SHG) and two photon excitation fluorescence (TPEF). We show that TPEF can reveal corneal epithelial cellular network while SHG can highlight the presence of corneal stromal lamellae. We then demonstrate that, in confocal reflectance measurement, as depth increases from 0 to 80 mu m both corneal depolarization and retardation increase. Furthermore, it is shown that the spatial distribution of corneal depolarization and retardation displays similar complexity in both reflectance (confocal and non-confocal) and transmission measurement, likely due to the strong degree of heterogeneity in the stromal lamellae. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available