4.6 Article

CeO2 nanofibers-CdS nanostructures n-n junction with enhanced visible-light photocatalytic activity

Journal

ARABIAN JOURNAL OF CHEMISTRY
Volume 13, Issue 11, Pages 7583-7597

Publisher

ELSEVIER
DOI: 10.1016/j.arabjc.2020.08.015

Keywords

CeO2 nanofibers; Electrospinning; Heterojunction; Degradation; Photocatalysis; Photocurrent

Ask authors/readers for more resources

In the present work, the n-cerium (IV) oxide (CeO2)/n-cadmium sulfide (CdS) composite nanofibers were successfully synthesized via a facile electrospinning and hydrothermal synthesis strategy. The physicochemical properties of the synthesized composite nanofibers were investigated by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy Dispersive X-Ray Spectroscopy (EDS), diffuse Reflectance Spectroscopy (DRS), Fourier-transform infrared (FTIR), photoluminescence (PL), Brunauer-Emmett-Teller (BET) and Raman spectroscopy analysis. The activities of the CeO2/CdS were evaluated through the photocatalytic degradation of Rose Bengal (RB) in an aqueous solution under blue LED light radiation. CeO2/CdS composites exhibit higher photocurrent density in photocurrent response experiment and smaller charge-transfer resistance in electrochemical impedance spectroscopy (EIS). Overall, the results confirmed higher charge separation efficiency in CeO2/CdS composites compared to pristine CeO2 nanofibers, and CdS, which is related to intimately contact among the CeO2, and CdS. The present work provides a new approach to construct n-n heterojunction photocatalysts based on electrospinning and a deeper insight for the photocatalytic degradation activity. In addition, possible degradation mechanism and pathways were proposed according to the identified intermediates. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available