4.8 Article

Altering the Positions of Chlorine and Bromine Substitution on the End Group Enables High-Performance Acceptor and Efficient Organic Solar Cells

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Asymmetric Acceptors with Fluorine and Chlorine Substitution for Organic Solar Cells toward 16.83% Efficiency

Tao Liu et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics

Shuixing Li et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency

Yong Cui et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Bromination: An Alternative Strategy for Non-Fullerene Small Molecule Acceptors

Huan Wang et al.

ADVANCED SCIENCE (2020)

Article Multidisciplinary Sciences

Organic photovoltaic cell with 17% efficiency and superior processability

Yong Cui et al.

NATIONAL SCIENCE REVIEW (2020)

Article Multidisciplinary Sciences

18% Efficiency organic solar cells

Qishi Liu et al.

SCIENCE BULLETIN (2020)

Article Multidisciplinary Sciences

Alloy-like ternary polymer solar cells with over 17.2% efficiency

Qiaoshi An et al.

SCIENCE BULLETIN (2020)

Article Chemistry, Multidisciplinary

Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model

Lingling Zhan et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Multidisciplinary Sciences

Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics

Jun Yuan et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Multidisciplinary

17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS2 as a Replacement for PEDOT:PSS

Yuanbao Lin et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

Fluorene-fused ladder-type non-fullerene small molecule acceptors for high-performance polymer solar cells

Ruijie Ming et al.

MATERIALS CHEMISTRY FRONTIERS (2019)

Review Chemistry, Multidisciplinary

Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells

Guangye Zhang et al.

CHEMICAL REVIEWS (2018)

Review Chemistry, Physical

Organic solar cells based on non-fullerene acceptors

Jianhui Hou et al.

NATURE MATERIALS (2018)

Article Multidisciplinary Sciences

Organic and solution-processed tandem solar cells with 17.3% efficiency

Lingxian Meng et al.

SCIENCE (2018)

Review Chemistry, Multidisciplinary

Light Harvesting for Organic Photovoltaics

Gordon J. Hedley et al.

CHEMICAL REVIEWS (2017)

Article Chemistry, Multidisciplinary

Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells

Shuixing Dai et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Article Chemistry, Multidisciplinary

Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells

Wenchao Zhao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Article Chemistry, Multidisciplinary

Reduced voltage losses yield 10% efficient fullerene free organic solar cells with > 1 V open circuit voltages

D. Baran et al.

ENERGY & ENVIRONMENTAL SCIENCE (2016)

Article Chemistry, Multidisciplinary

Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells

Yankang Yang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)

Article Chemistry, Multidisciplinary

An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells

Yuze Lin et al.

ADVANCED MATERIALS (2015)