4.8 Article

Observation of two-dimensional Anderson localisation of ultracold atoms

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41467-020-18652-w

Keywords

-

Funding

  1. German Academic Exchange Service (DAAD)
  2. Marsden Fund [UOA1330]

Ask authors/readers for more resources

Anderson localisation -the inhibition of wave propagation in disordered media- is a surprising interference phenomenon which is particularly intriguing in two-dimensional (2D) systems. While an ideal, non-interacting 2D system of infinite size is always localised, the localisation length-scale may be too large to be unambiguously observed in an experiment. In this sense, 2D is a marginal dimension between one-dimension, where all states are strongly localised, and three-dimensions, where a well-defined phase transition between localisation and delocalisation exists as the energy is increased. Here, we report the results of an experiment measuring the 2D transport of ultracold atoms between two reservoirs, which are connected by a channel containing pointlike disorder. The design overcomes many of the technical challenges that have hampered observation of localisation in previous works. We experimentally observe exponential localisation in a 2D ultracold atom system. Anderson localization has been previously reported in 1D and 3D but it has remained elusive in 2D environments. Here the authors report probable observation of 2D Anderson localization using ultracold atoms in a weak interaction regime.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available