4.8 Article

Telomere dysfunction activates YAP1 to drive tissue inflammation

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41467-020-18420-w

Keywords

-

Funding

  1. NIH [P30DK056338, P30CA16672, R01 CA084628]
  2. PCF Young Investigator Award [17YOUN18]
  3. CPRIT Research Training Program [RP140106, 170067, RP170067]
  4. K99/R00 grant [1K99 CA218891-01A1]

Ask authors/readers for more resources

Germline telomere maintenance defects are associated with an increased incidence of inflammatory diseases in humans, yet whether and how telomere dysfunction causes inflammation are not known. Here, we show that telomere dysfunction drives pATM/c-ABL-mediated activation of the YAP1 transcription factor, up-regulating the major pro-inflammatory factor, pro-IL-18. The colonic microbiome stimulates cytosolic receptors activating caspase-1 which cleaves pro-IL-18 into mature IL-18, leading to recruitment of interferon (IFN)-gamma -secreting T cells and intestinal inflammation. Correspondingly, patients with germline telomere maintenance defects exhibit DNA damage (gamma H2AX) signaling together with elevated YAP1 and IL-18 expression. In mice with telomere dysfunction, telomerase reactivation in the intestinal epithelium or pharmacological inhibition of ATM, YAP1, or caspase-1 as well as antibiotic treatment, dramatically reduces IL-18 and intestinal inflammation. Thus, telomere dysfunction-induced activation of the ATM-YAP1-pro-IL-18 pathway in epithelium is a key instigator of tissue inflammation. How telomere dysfunction is directly linked to inflammation in humans is currently unclear. Here the authors reveal that telomere dysfunction drives activation of the YAP1 transcription factor, up-regulating the pro inflammatory factor, pro-IL-18 thus revealing a link between telomere dysfunction and initiation of intestinal inflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available