4.7 Article

DNER promotes epithelial-mesenchymal transition and prevents chemosensitivity through the Wnt/β-catenin pathway in breast cancer

Journal

CELL DEATH & DISEASE
Volume 11, Issue 8, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s41419-020-02903-1

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China (NSFC) [81471781]
  2. National Major Scientific Instruments and Equipment Development Projects grant [2012YQ160203]
  3. NSFC [81870550, 81903166]
  4. Hubei Province Health and Family Planning Scientific Research Project [RMYD2018M78]
  5. Hubei Provincial Health Commission [WJ2019Q044]

Ask authors/readers for more resources

Breast cancer (BC) is the most common malignant tumour in women worldwide, and one of the most common fatal tumours in women. Delta/Notch-like epidermal growth factor (EGF)-related receptor (DNER) is a transmembrane protein involved in the development of tumours. The role and potential mechanism of DNER in epithelial-mesenchymal transition (EMT) and apoptosis in BC are not fully understood. We find that DNER is overexpressed in BC tissue, especially triple-negative breast cancer (TNBC) tissue, and related to the survival of BC and TNBC patients. In addition, DNER regulates cell EMT to enhance the proliferation and metastasis of BC cells via the Wnt/beta-catenin pathway in vitro and in vivo. Moreover, the expression levels of beta-catenin and DNER in BD tissue are positively correlated. The simultaneously high expression of DNER and beta-catenin contributes to poor prognosis in BC patients. Finally, DNER protects BC cells from epirubicin-induced growth inhibition and apoptosis via the Wnt/beta-catenin pathway. In conclusion, these results suggest that DNER induces EMT and prevents apoptosis by the Wnt/beta-catenin pathway, ultimately promoting the malignant progression of BC. In conclusion, our study demonstrates that DNER functions as an oncogene and potentially valuable therapeutic target for BC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available