4.5 Article

Identifying a gene expression signature of frequent COPD exacerbations in peripheral blood using network methods

Journal

BMC MEDICAL GENOMICS
Volume 8, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12920-014-0072-y

Keywords

Network analysis; Chronic obstructive pulmonary disease; Gene expression profiling; Biomarker

Funding

  1. National Institutes of Health [R01HL094635, R01NR013377, P01HL105339]
  2. Roche

Ask authors/readers for more resources

Background: Exacerbations of chronic obstructive pulmonary disease (COPD), characterized by acute deterioration in symptoms, may be due to bacterial or viral infections, environmental exposures, or unknown factors. Exacerbation frequency may be a stable trait in COPD patients, which could imply genetic susceptibility. Observing the genes, networks, and pathways that are up-and down-regulated in COPD patients with differing susceptibility to exacerbations will help to elucidate the molecular signature and pathogenesis of COPD exacerbations. Methods: Gene expression array and plasma biomarker data were obtained using whole-blood samples from subjects enrolled in the Treatment of Emphysema With a Gamma-Selective Retinoid Agonist (TESRA) study. Linear regression, weighted gene co-expression network analysis (WGCNA), and pathway analysis were used to identify signatures and network sub-modules associated with the number of exacerbations within the previous year; other COPD-related phenotypes were also investigated. Results: Individual genes were not found to be significantly associated with the number of exacerbations. However using network methods, a statistically significant gene module was identified, along with other modules showing moderate association. A diverse signature was observed across these modules using pathway analysis, marked by differences in B cell and NK cell activity, as well as cellular markers of viral infection. Within two modules, gene set enrichment analysis recapitulated the molecular signatures of two gene expression experiments; one involving sputum from asthma exacerbations and another involving viral lung infections. The plasma biomarker myeloperoxidase (MPO) was associated with the number of recent exacerbations. Conclusion: A distinct signature of COPD exacerbations may be observed in peripheral blood months following the acute illness. While not predictive in this cross-sectional analysis, these results will be useful in uncovering the molecular pathogenesis of COPD exacerbations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available