4.5 Article

Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits

Journal

FRONTIERS IN COMPUTATIONAL NEUROSCIENCE
Volume 14, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fncom.2020.556628

Keywords

neuron; Hodgkin-Huxley; linear model; transfer function; systems theory; epilepsy; filter

Funding

  1. Science Foundation Ireland (SFI)
  2. European Regional Development Fund [13/RC/2077, 16/RC/3948]
  3. European Union's Horizon 2020 Research and Innovation Programme through the Marie SklodowskaCurie Grant [839553]

Ask authors/readers for more resources

High-frequency firing activity can be induced either naturally in a healthy brain as a result of the processing of sensory stimuli or as an uncontrolled synchronous activity characterizing epileptic seizures. As part of this work, we investigate how logic circuits that are engineered in neurons can be used to design spike filters, attenuating high-frequency activity in a neuronal network that can be used to minimize the effects of neurodegenerative disorders such as epilepsy. We propose a reconfigurable filter design built from small neuronal networks that behave as digital logic circuits. We developed a mathematical framework to obtain a transfer function derived from a linearization process of the Hodgkin-Huxley model. Our results suggest that individual gates working as the output of the logic circuits can be used as a reconfigurable filtering technique. Also, as part of the analysis, the analytical model showed similar levels of attenuation in the frequency domain when compared to computational simulations by fine-tuning the synaptic weight. The proposed approach can potentially lead to precise and tunable treatments for neurological conditions that are inspired by communication theory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available