4.4 Article

Two-year monitoring of tick abundance and influencing factors in an urban area (city of Hanover, Germany)

Journal

TICKS AND TICK-BORNE DISEASES
Volume 11, Issue 5, Pages -

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.ttbdis.2020.101464

Keywords

Ixodes ricinus; Seasonal population dynamics; Ticks; Infestation risk; Climate

Ask authors/readers for more resources

Ticks may transmit a variety of human and animal pathogens. Prevalence of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in ticks has been monitored in the city of Hanover, Germany, since 2005. However, to determine the infection risk for humans and animals, not only pathogen prevalence, but also tick abundance and seasonality need to be taken into account. Therefore, the aim of this study was to investigate tick abundance at ten different collection sites in the city of Hanover, Germany. Collection of questing ticks was performed by the flagging method in the first and second half of each month during the tick season (April-October) in 2017 and 2018. At each 200 m(2) collection site, one of four 50 m(2) fields was sampled per visit on a rotational basis, resulting in 100 m(2) sampled per month. In addition, data on weather conditions, near-ground temperature, relative humidity and vegetation composition were noted at each collection event. In 2017, a total of 1770 ticks were collected, while 1866 ticks were collected in 2018. Ixodes ricinus was the most prevalent species (97.0 % of all ticks, 98.0 % of nymphs, 91.6 % of adults) followed by I. inopinatus (2.3 % of all ticks, 1.1 % of nymphs, 8.0 % of adults), I. frontalis (0.6 % of all ticks, 0.6 % of nymphs, 0.3 % of adults) and I. hexagonus (0.03 % of all ticks, 0.03 % of nymphs, 0.0 % of adults). Using generalized linear mixed modeling, density of I. ricinus and I. in-opinatus in 2017 was significantly higher than in 2018. Regarding different landscape types, ticks were sig-nificantly more abundant in mixed forests than in parks, with more than 50 ticks/100 m(2) on average in both years. In urban parks, average tick density amounted to 15 ticks/100 m(2) in 2017 and 11 ticks/100 m(2) in 2018 and in broad-leaved forests average tick density was 13 and 18 ticks/100 m(2) in 2017 and 2018, respectively. Tick density showed a marked peak in June 2017 and in May 2018 at most sites, whereas a less pronounced peak was recognizable in September. Tick density varied considerably between collection sites. However, no statistically significant effect of (micro-)climatic variables, including near-ground temperature, relative humidity and sa-turation deficit, was found. Thus, further factors, such as the abundance of wildlife hosts, need to be considered in future studies to explain the differences between collection sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available