4.8 Article

Catalytic degradation of micropollutant by peroxymonosulfate activation through Fe(III)/Fe(II) cycle confined in the nanoscale interlayer of Fe(III)-saturated montmorillonite

Journal

WATER RESEARCH
Volume 182, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116030

Keywords

Peroxymonosulfate activation; Fe(III)-saturated montmorillonite; nanoconfined effect; Fe(III)/Fe(II) cycle; micropollutant removal

Funding

  1. Open Project of State Key Laboratory of UrbanWater Resource and Environment,Harbin Institute of Technology [QAK202003]
  2. China Postdoctoral Science Foundation [2017M611377]
  3. National Key R&D Program of China [:2017YFA0207203]
  4. National Natural Science Foundation of China [51508129]
  5. National Science and Technology Major Projects for Water Pollution Control and Treatment [2017ZX07201003]

Ask authors/readers for more resources

Low cost, green, regenerable catalyst for persulfate activation is the popularly concerned topic for the degradation of persistent organic micropollutants in drinking water. In this work, natural montmorillonite (MMT) saturated with Fe(III) ions was used to activate peroxymonosulfate (PMS) for the degradation of atrazine in raw drinking water. Results showed that the adsorption of atrazine was quickly completed within 1 min and the percentage degradation was finally increased up to 94.1% in 60 min. The door-spacing of MMT was enlarged to 2.91 nm at the most by Fe(III) saturation. Atrazine was adsorbed into the nanoscale interlayer of Fe(III)-saturated montmorillonite (Fe-MMT), where the Fe(III)/Fe(II) cycle was sustainably realized through the accelerated transformation of electrons between Fe(III) and PMS. Meanwhile, the in situ generated Fe(II) accelerated the decomposition of PMS to further proceed the degradation of atrazine through the oxidation of HO center dot and SO4 center dot(-) radicals. This nanoconfined effect of PMS activation by Fe(III) was further confirmed through the degradation of various micropollutants in the backgrounds of river water. The selective catalytic oxidation of micropollutants through PMS activation was attributed to the 2D mesoporous structure of Fe-MMT, inhibiting the interlayer adsorption of larger molecular backgrounds (humic acids etc.). Fe(III)-saturated montmorillonite (Fe-MMT) provided a feasible and scalable method of PMS activation by Fe(III) for the degradation of micropollutants in drinking water. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available