4.8 Article

Doublecortin Is Excluded from Growing Microtubule Ends and Recognizes the GDP-Microtubule Lattice

Journal

CURRENT BIOLOGY
Volume 26, Issue 12, Pages 1549-1555

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2016.04.020

Keywords

-

Funding

  1. National Institutes of Health [R01 GM079139, S10 RR26758]

Ask authors/readers for more resources

Many microtubule (MT) functions are mediated by a diverse class of proteins (+TIPs) at growing MT plus ends that control intracellular MT interactions and dynamics and depend on end-binding proteins (EBs) [1]. Cryoelectron microscopy has recently identified the EB binding site as the interface of four tubulin dimers that undergoes a conformational change in response to beta-tubulin GTP hydrolysis [2, 3]. Doublecortin (DCX), a MT-associated protein (MAP) required for neuronal migration during cortical development [4, 5], binds to the same site as EBs [6], and recent in vitro studies proposed DCX localization to growing MT ends independent of EBs [7]. Because this conflicts with observations in neurons [8, 9] and the molecular function of DCX is not well understood, we revisited intracellular DCX dynamics at low expression levels. Here, we report that DCX is not a +TIP in cells but, on the contrary, is excluded from the EB1 domain. In addition, we find that DCX-MT interactions are highly sensitive to MT geometry. In cells, DCX binding was greatly reduced at MT segments with high local curvature. Remarkably, this geometry-dependent binding to MTs was completely reversed in the presence of taxanes, which reconciles incompatible observations in cells [9] and in vitro [10]. We propose a model explaining DCX specificity for different MT geometries based on structural changes induced by GTP hydrolysis that decreases the spacing between adjacent tubulin dimers [11]. Our data are consistent with a unique mode of MT interaction in which DCX specifically recognizes this compacted GDP-like MT lattice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available