4.8 Review

The Basal Ganglia Over 500 Million Years

Journal

CURRENT BIOLOGY
Volume 26, Issue 20, Pages R1088-R1100

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2016.06.041

Keywords

-

Funding

  1. Swedish Research Council [VR-M-K2013-62X-03026, VR-NT-621-2013-4613]
  2. European Union [604102]
  3. Karolinska Institutet's Research Funds
  4. StratNeuro Karolinska Institutet

Ask authors/readers for more resources

The lamprey belongs to the phylogenetically oldest group of vertebrates that diverged from the mammalian evolutionary line 560 million years ago. A comparison between the lamprey and mammalian basal ganglia establishes a detailed similarity regarding its input from cortex/pallium and thalamus, as well as its intrinsic organisation and projections of the output nuclei. This means that the basal ganglia circuits now present in rodents and primates most likely had evolved already at the dawn of vertebrate evolution. This includes the 'direct pathway' with striatal projection neurons (SPNs) expressing dopamine D1 receptors, which act to inhibit the tonically active GABAergic output neurons in globus pallidus interne and substantia nigra pars reticulate that at rest keep the brainstem motor centres under tonic inhibition. The 'indirect pathway' with dopamine D2 receptor-expressing SPNs and intrinsic basal ganglia nuclei is also conserved. The net effect of the direct pathway is to disinhibit brainstem motor centres and release motor programs, while the indirect pathway instead will suppress motor activity. Transmitters, connectivity and membrane properties are virtually identical in lamprey and rodent basal ganglia. We predict that the basal ganglia contains a series of modules each controlling a given pattern of behaviour including locomotion, eye-movements, posture, and chewing that contain both the direct pathway to release a motor program and the indirect pathway to inhibit competing behaviours. The phasic dopamine input serves value-based decisions and motor learning. During vertebrate evolution with a progressively more diverse motor behaviour, the number of modules will have increased progressively. These new modules with a similar design will be used to control newly developed patterns of behaviour a process referred to as exaptation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available