4.5 Article

Nrf2 activation protects auditory hair cells from cisplatin-induced ototoxicity independent on mitochondrial ROS production

Journal

TOXICOLOGY LETTERS
Volume 331, Issue -, Pages 1-10

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2020.04.005

Keywords

Cisplatin; Nrf2; ROS; Mitochondrion; Apoptosis; Hair cell protection; Oxidative stress

Categories

Funding

  1. China Postdoctoral Science Foundation [2018M640863]
  2. National Natural Science Foundation of China [81900945, 81970887, 81771018, 81873699]

Ask authors/readers for more resources

Cisplatin is a well-known and commonly used chemotherapeutic agent. However, cisplatin-induced ototoxicity limits its clinical use. Previous studies have shown an important role of reactive oxygen species (ROS) accumulation in the pathogenesis of cisplatin-induced ototoxicity. In many cell types, the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE) protect against oxidative stress by suppressing ROS. Here our results showed that cisplatin injury reduced Nrf2 expression and inhibited Nrf2 translocation in HEI-OC1 cells and Nrf2 activator tert-butylhydroquinone (TBHQ) rescued hair cells from cisplatin induced apoptosis by suppressing the total cellular ROS accumulation. Moreover, we found that decreased ROS accumulation induced by TBHQ didn't depend on mitochondrial derived ROS production, indicating that Nrf2 activation alleviated cisplatin induced oxidative stress and apoptosis through mitochondrial-independent ROS production. Therefore, we provide a potential strategy of prevention and treatment for cisplatin-induced ototoxicity by Nrf2 activation. In conclusion, Nrf2 activation protects auditory hair cells from cisplatin-induced ototoxicity through suppressing the total cellular ROS levels which arise from sources other than mitochondria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available