4.7 Article

Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs

Journal

THIN-WALLED STRUCTURES
Volume 154, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2020.106898

Keywords

Auxetic honeycomb; Foam concrete; Dynamic crushing; Energy absorption; Negative Poisson's ratio

Funding

  1. National Natural Science Foundation of China [51778028, 51808017]
  2. Beijing Education Committee [KM201810005019]
  3. State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) [KFJJ20-02 M]

Ask authors/readers for more resources

Honeycombs based composites are applied in a wide spectrum of applications. In the present study, the performance of novel foam concrete filled auxetic aluminium honeycombs subjected to quasi-static and low velocity compression is experimentally and numerically investigated. The response mode, crushing resistance and energy absorption capacity of hollow and foam concrete filled auxetic honeycombs are experimentally studied under quasi-static and low velocity loading. Numerical models, validated with the test results, are employed in parametric study to further examine the performance. If properly designed, the interaction between the auxetic honeycomb and foam concrete reinforces each other, making the two components to work in synergy. It is found that the response modes of the composites change from compression failure with low peak stress and stable plateau stress to shear failure with high peak stress and severely fluctuated plateau stress with increasing foam concrete density. The response of foam concrete filled honeycombs gradually transforms from the quasi-static mode with global deformation to dynamic mode with localized crushing near loading end, and the effective Poisson's ratio of the composites decreases, both with increasing compression speed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available