4.7 Article

Dispersive liquid-liquid microextraction (DLLME) and external real matrix calibration for the determination of the UV absorber 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV 328) and its metabolites in human blood

Journal

TALANTA
Volume 223, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.talanta.2020.121699

Keywords

UV 328; Human biomonitoring; Dispersive liquid-liquid microextraction; UV absorber; Whole blood analysis; Metabolites

Funding

  1. Chemie Wirtschaftsforderungsgesellschaft mbH

Ask authors/readers for more resources

UV 328 is a benzotriazole ultraviolet light absorber used in plastics and other organic substances. A new analytical method has been developed to determine UV 328 and its metabolites in human whole blood.
2-(2H-Benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV 328; CAS: 25973-55-1) is a benzotriazole ultraviolet light (BUV) absorber which is applied to plastics and other organic substances to prevent discoloration and enhance product stability. Therefore, UV 328 is frequently used as a plastic additive and may lead to an exposure of consumers. For a reliable assessment of UV 328 metabolism, an analytical method applying dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography tandem mass spectrometry and advanced electron ionization was developed which allows the determination of UV 328 and six of its metabolites in human whole blood. Sample preparation was optimized with respect to DLLME parameters. A critical aspect of the procedure was the application of spiked human blood for calibration, which proved to be essential for achieving accurate results. Validation of the method resulted in limits of detection of 0.1 mu g/L for all analytes. Variation coefficients ranged from 2 to 9% for intraday precision and from 3 to 11% for interday precision. Furthermore, relative recovery rates between 80 and 100% were calculated. Afterwards, the procedure was successfully applied to blood samples collected from a volunteer orally exposed to a single dose of UV 328. The method proved to be highly sensitive, repeatable and robust for all compounds and may further be used for studies to elucidate the human metabolism and kinetics of UV 328 and for biomonitoring of specific, environmental and occupational exposure to this UV stabilizer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available