4.7 Article

A FRET-based aptasensor for ochratoxin A detection using graphitic carbon nitride quantum dots and CoOOH nanosheets as donor-acceptor pair

Journal

TALANTA
Volume 218, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.talanta.2020.121159

Keywords

Forster resonance energy transfer; Ochratoxin A; Graphitic carbon nitride quantum dots; Cobalt oxyhydroxide nanosheets

Funding

  1. National Natural Science Foundation of China [21675065, 61801195]
  2. China Postdoctoral Science Foundation [2019T120399, 2018M632238]
  3. Innovation/Entrepreneurship Program of Jiangsu Province
  4. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [18KJB416004]
  5. Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions [PAPD-2018-87]

Ask authors/readers for more resources

A new fluorescence aptasensor for Ochratoxin A (OTA) analysis in corn and barley flour was developed owing to the favourable quenching function of cobalt oxyhydroxide (CoOOH) nanosheets. The first combination of graphitic carbon nitride quantum dots (g-CNQDs) and CoOOH nanosheets as efficient energy donor-acceptor pair was reported, and the quenching mechanism was proved by investigating the fluorescence lifetime of g-CNQDs. The aptamer-modified g-CNQDs (g-CNQDs-apt) were adsorbed onto CoOOH nanosheets surface by van der Waals force. Consequently, the Forster resonance energy transfer (FRET) from g-CNQDs-apt to CoOOH nanosheets was initiated, leading to quenched fluorescence. With the addition of OTA, the linear aptamer specifically bound with OTA to form G-quadruplex, which had relatively weak interaction with the CoOOH nanosheets and separated from the nanosheets surface. Thus, the FRET process between g-CNQDs-apt and CoOOH nanosheets was hindered, leading to the fluorescence of g-CNQDs-apt recovered clearly. The developed aptasensor exhibited acceptable detection limit with 0.5 nM and desirable linear relationship from 1 nM to 140 nM. Meanwhile, the aptasensor possessed multiple advantages, including easy operation, rapid detection and high selectivity. Moreover, the aptamer sensing platform was favorably applied for OTA determination in cereal (barley and corn flour), in which the recoveries varied from 94.5% to 101% with the relative standard deviation under 2.24%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available