4.7 Article

Characterizing corrosion properties of graphene barrier layers deposited on polycrystalline metals

Journal

SURFACE & COATINGS TECHNOLOGY
Volume 398, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2020.126077

Keywords

Graphene; Polycrystalline metal; Oxidation; Interfacial bonds; Steam corrosion

Funding

  1. National Science Foundation (NSF) program of thermal transport processes [1336443]
  2. Directorate For Engineering
  3. Div Of Chem, Bioeng, Env, & Transp Sys [1336443] Funding Source: National Science Foundation

Ask authors/readers for more resources

In this study, barrier properties of as-grown graphene layers (Gr) were systematically characterized on two widely used polycrystalline metal substrates, copper (Cu) and nickel (Ni), under ambient humid air as well as in aggressive steam/air environments. Four types of graphene coatings were used to distinguish the bonding effect: directly grown graphene coatings on Cu and Ni as well as transferred graphene coatings on Cu and Ni. Corrosion rates were examined through Tafel analysis in both single-cycle and multiple-cycle experiments. Our study shows that in-plane diffusion of water and oxygen into underlying Cu substrates triggers corrosion of Cu surfaces even in the presence of graphene coatings. Similar corrosion caused by in-plane diffusion of corrosive species was not observed in the Ni/Gr system, which effectively protects the Ni surface in most regions under steam/air environment over 1 month. The Ni/Gr system demonstrates ultra-low and stable corrosion rates compared with those of transferred graphene on Ni (TrGr/Ni) and Cu/Gr systems in destructive corrosion evolution tests. After three cycles cumulative Tafel tests, the corrosion rates of TrGr/Ni and Cu/Gr system dramatically increased 66.3 times and 361.6 times compared to that of Ni/Gr system, respectively. This study shows that the formation of a strong metal-graphene interfacial bond plays a critical role in enabling long-term corrosion-resistant by applying graphene coatings on polycrystalline metal substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available