4.6 Article

Comparative study of binary cadmium sulfide (CdS) and tin disulfide (SnS2) thin buffer layers

Journal

SOLAR ENERGY
Volume 208, Issue -, Pages 637-642

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2020.08.036

Keywords

Buffer layer; CdS; SnS2; Characterization; Optical and electrochemical analysis

Categories

Funding

  1. ministry of education generalitat Valenciana [ENE2016-77798-C4-2-R]

Ask authors/readers for more resources

Binary compound tin disulfide (SnS2) and cadmium sulfide (CdS) are the potential candidates used as a buffer layer for copper indium gallium selenide (CIGS) and copper zinc tin sulfide (CZTS) thin-film device. Herein, both compounds have been successfully prepared through simple hydrothermal (HD) and chemical bath deposition (CBD) techniques, respectively. The prepared samples were characterized by different available techniques like X-ray diffraction (XRD), atomic force microscopy (AFM), surface electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmittance electrons microscopy (TEM), UV-Visible spectroscopy and photoelectrochemical (PEC) analysis. The XRD analysis confirms the polycrystalline nature of the prepared thin films. AFM analysis showed that the SnS2 display better roughness (60 nm), grain size (75 nm) than CdS roughness (23 nm), grain size (41 nm) thin films. SEM and EDS studies revealed near stoichiometry behavior of elemental composition of the films. The optical absorption spectrum showed the direct bandgap of CdS 2.45 eV and 2.20 eV for SnS2 thin films. The PEC analysis revealed that the SnS2 thin films exhibit two times higher photoresponse (140 mu A) as compare to CdS (80 NA) thin films. The SnS2 high photocurrent could be attributed to the small band gap and increase in grain size which can trap more incident light. Based on the results the SnS2 used as a buffer layer can be a good choice for an efficient photovoltaic device.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available