4.7 Review

Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications

Journal

SCIENCE CHINA-CHEMISTRY
Volume 63, Issue 11, Pages 1517-1542

Publisher

SCIENCE PRESS
DOI: 10.1007/s11426-020-9835-8

Keywords

electrocatalysis; ORR; metal-nitrogen-carbon; M@NC; fuel cells; oxygen reduction

Funding

  1. National Key Research and Development Program of China [2016YFB0101202]
  2. National Natural Science Foundation of China [21773263, 21972147]

Ask authors/readers for more resources

The development of advanced transition metal/nitrogen/carbon-based (M/N/C) catalysts with high activity and extended durability for oxygen reduction reaction (ORR) is critical for platinum-group-metal (PGM) free fuel cells but still remains great challenging. In this review, we summarize the recent progress in two typical M/N/C catalysts (atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts and carbon-supported metal nanoparticles with N-doped carbon shells (M@NC)) with an emphasis on their potential applications in fuel cells. Starting with understanding the active sites in these two types of catalysts, the representative innovative strategies for enhancing their intrinsic activity and increasing the density of these sites are systematically introduced. The synergistic effects of M-N-C and M@NC are subsequently discussed for those M/N/C catalysts combining both of them. To translate the material-level catalyst performance into high-performance devices, we also include the recent progress in engineering the porous structure and durability of M/N/C catalysts towards efficient performance in fuel cell devices. From the viewpoint of industrial applications, the scale-up cost-effective synthesis of M/N/C catalysts has been lastly briefed. With this knowledge, the challenges and perspectives in designing advanced M/N/C catalysts for potential PGM-free fuel cells are proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available