4.7 Article

Intrinsically high efficiency sodium metal anode

Journal

SCIENCE CHINA-CHEMISTRY
Volume 63, Issue 11, Pages 1557-1562

Publisher

SCIENCE PRESS
DOI: 10.1007/s11426-020-9808-6

Keywords

sodium metal battery; electrolyte; Coulombic efficiency; deep cycling

Funding

  1. U.S. National Science Foundation [CBET-1903342]
  2. China Scholarship Council
  3. Link Foundation Energy Fellowship
  4. Sloan Research Fellowship

Ask authors/readers for more resources

Efficient plating/stripping of Na metal is critical to stable operation of any rechargeable Na metal battery. However, it is often overlooked or misunderstood in electrochemical measurements using thick Na electrodes with large excess of Na reserves. Herein, we report two crucial aspects, which have generally been ignored in previous studies, in the development of more practical capacity-controlled Na metal electrodes that can be efficiently cycled at 100% depth. We find that common carbonate electrolytes induce severe side reaction and highly irreversible Na plating/stripping, whereas ether electrolytes without any additive support thick Na metal electrodes operating at a high average Coulombic efficiency of 99.6% for over 300 cycles. We further show that to realize such high efficiency in thin Na metal electrodes, it is necessary to ensure strong adhesion between the thin Na layer and the Cu current collector, which we solve by introducing an Au interlayer. The resulting transferable thin Na metal electrodes enable high-energy-density, high-efficiency and reasonably stable-cycling Na parallel to Na3V2(PO4)(3)batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available