4.8 Article

Structural basis of transcription-translation coupling and collision in bacteria

Journal

SCIENCE
Volume 369, Issue 6509, Pages 1355-+

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.abb5036

Keywords

-

Funding

  1. French Infrastructure for Integrated Structural Biology [ANR-10-INBS-05, ANR-10-LABX-0030-INRT]
  2. French State fund [ANR-10-IDEX-0002-02]
  3. EMBO long-term fellowship
  4. European Research Council [679734]

Ask authors/readers for more resources

Prokaryotic messenger RNAs (mRNAs) are translated as they are transcribed. The lead ribosome potentially contacts RNA polymerase (RNAP) and forms a supramolecular complex known as the expressome. The basis of expressome assembly and its consequences for transcription and translation are poorly understood. Here, we present a series of structures representing uncoupled, coupled, and collided expressome states determined by cryo-electron microscopy. A bridge between the ribosome and RNAP can be formed by the transcription factor NusG, which stabilizes an otherwise-variable interaction interface. Shortening of the intervening mRNA causes a substantial rearrangement that aligns the ribosome entrance channel to the RNAP exit channel. In this collided complex, NusG linkage is no longer possible. These structures reveal mechanisms of coordination between transcription and translation and provide a framework for future study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available