4.5 Article

A tabletop setup for ultrafast helicity-dependent and element-specific absorption spectroscopy and scattering in the extreme ultraviolet spectral range

Journal

REVIEW OF SCIENTIFIC INSTRUMENTS
Volume 91, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0013928

Keywords

-

Funding

  1. DFG [TRR227]

Ask authors/readers for more resources

Further advances in the field of ultrafast magnetization dynamics require experimental tools to measure the spin and electron dynamics with element-specificity and femtosecond temporal resolution. We present a new laboratory setup for two complementary experiments with light in the extreme ultraviolet (XUV) spectral range. One experiment is designed for polarization-dependent transient spectroscopy, particularly for simultaneous measurements of magnetic circular dichroism (MCD) at the 3p resonances of the 3d transition metals Fe, Co, and Ni. The second instrument is designed for resonant small-angle scattering experiments with monochromatic light allowing us to monitor spin dynamics with spatial information on the nanometer scale. We combine a high harmonic generation (HHG) source with a phase shifter to obtain XUV pulses with variable polarization and a flux of about (3 +/- 1) x 10(10) photons/s/harmonic at 60 eV at the source. A dedicated reference spectrometer effectively reduces the intensity fluctuations of the HHG spectrum to below 0.12% rms. We demonstrate the capabilities of the setup by capturing the energy- and polarization-dependent absorption of a thin Co film as well as the time-resolved small-angle scattering in a magnetic-domain network of a Co/Pt multilayer. The new laboratory setup allows systematic studies of optically induced spin and electron dynamics with element-specificity, particularly with MCD as the contrast mechanism with femtosecond temporal resolution and an unprecedented signal-to-noise ratio.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available