4.7 Article

Polymorphs, Hydrates, Cocrystals, and Cocrystal Hydrates: Thermodynamic Modeling of Theophylline Systems

Journal

CRYSTAL GROWTH & DESIGN
Volume 16, Issue 8, Pages 4439-4449

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.cgd.6b00554

Keywords

-

Funding

  1. CLIB-Graduate Cluster Industrial Biotechnology

Ask authors/readers for more resources

Polymorphic transitions and hydrate formation often occur in systems of cocrystal-forming components. To increase the efficiency of cocrystal formation and purification processes, the complex phase behavior of such systems was modeled using perturbed-chain statistical associating fluid theory (PC-SAFT). This is demonstrated for theophylline, a well-studied pharmaceutical, exhibiting polymorphs, as well as formation of a hydrate, cocrystals, and even cocrystal hydrates. The solubility of theophylline in water was modeled including hydrate formation (1:1) as well as polymorphic transitions of theophylline between the anhydrate forms IV, II, and I. The solubilities of theophylline(IV), the thermodynamically stable form at ambient conditions, and the theophylline/glutaric acid (1:1) cocrystal could be predicted without performing additional measurements. Moreover, the complex phase behavior of the theophylline/citric acid/water system could be correlated accounting for the formation of the theophylline hydrate (1:1), citric acid (1:1) hydrate, theophylline/citric cocrystal (1:1), and the corresponding cocrystal hydrate (1:1:1). By accounting for the thermodynamic nonideality of the components in the cocrystal system, PC-SAFT is able to model the solubility behavior of all above-mentioned components in good agreement with the experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available