4.6 Article

Investigating human exposure to a practical wireless power transfer system using and the effect about key parameters of dosimetry

Journal

PLOS ONE
Volume 15, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0236929

Keywords

-

Ask authors/readers for more resources

Accurate dosimetry for a real wireless power transfer system (WPT) using electromagnetic resonance and electromagnetic induction requires an accurate description of the field formed by the system. In particular, the electromagnetic field depends on factors such as the construction of the transmitting and receiving coils, the circuit configuration, the input source of the front end of the transmitting coil, and the input impedance of the rear end of receiving coil. However, both circuit and electromagnetic simulations need to be performed to analyze the entire system, which is a difficult task. In order to overcome this difficulty, a method using an equivalent circuit model is proposed and verified through experiments. Moreover, the worst exposure condition to a magnetic field was examined by considering three variables: the charging mode, the state of charge, and the alignment and misalignment between the transmitting and receiving coils. Accordingly, the strongest magnetic field was created in the constant current mode in the fully charged state with misalignment. For example, the magnetic field strength in the case of 80% state of charge and misalignment was 1.397 times greater than in the case of 20% state of charge and alignment at a point 10 mm from the transmission pad. Finally, the induced electric fields and induced current densities were calculated by using a Japanese adult male whole-body voxel human model, and the results were compared with the values recommended by international guidelines to ascertain their compliance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available