4.7 Article

Numerical investigation of quasi-sessile droplet absorption into wound dressing capillaries

Journal

PHYSICS OF FLUIDS
Volume 32, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0021828

Keywords

-

Funding

  1. University of Brighton
  2. ESA MAP project TOPDESS
  3. ESA MAP project ENCOM 4

Ask authors/readers for more resources

The key concept in wound dressing design and development is the fact that keeping a wound moist accelerates healing. Therefore, the selection of the appropriate wound dressing type is vital. The absorption of wound exudate by wound dressings can be considered as a microfluidic phenomenon that can be investigated either by performing high resolution laboratory experiments or by utilizing high resolution Computational Fluid Dynamics numerical simulations. As an initial step, in the present paper, the effects of the pore size (wound dressing porosity), the liquid (wound exudate) viscosity, and the initial droplet diameter are numerically investigated using a simplified analog of the phenomenon that consists of a quasi-sessile droplet being absorbed by a single cylindrical pore. For this purpose, an enhanced Volume Of Fluid model, developed in the general context of OpenFOAM, is validated and applied. It is found that distinct droplet absorption rates exist with specific relationships derived using best-fit lines that can predict the absorption rates for particular values of pore size and liquid viscosity. For the examined Eo and Oh number ranges (0.0015 < Eo < 0.15 and 0.0035 < Oh < 0.095), these distinct droplet absorption rates are directly linked with four different droplet evolution regimes that are grouped in a well-defined flow map. Finally, it is shown that the resulting liquid absorption rates are not significantly affected by the initial droplet diameter and that an appropriate wound dressing porosity can be selected by an estimation of the wound exudate physical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available