4.6 Article

Real-time quantum edge enhanced imaging

Journal

OPTICS EXPRESS
Volume 28, Issue 24, Pages 35415-35426

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.395910

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [11934013, 61435011, 61525504]
  2. Anhui Initiative in Quantum Information Technologies [AHY020200]

Ask authors/readers for more resources

With the development of optical information processing technology, image edge enhancement technology has rapidly received extensive attention, especially in the field of quantum imaging. However, quantum edge enhanced imaging faces challenges in terms of time-consuming acquisition processes and the complexity of the devices used, which limits practical applications in real-time usage scenarios. Here we introduce and experimentally demonstrate a real-time (0.5 Hz) quantum edge enhanced imaging method that combines the spiral phase contrast technique with heralded single-photon imaging. The edge enhancement results show high quality and background free from raw data. Compared with direct imaging, our configuration can improve the signal-to-noise ratio significantly using the tight time correlations between photon pairs. The method also offers competitive advantages over ghost imaging, including higher brightness and a compact optical fiber delay rather than a free space delay. Additionally, we explore curved edge enhancement for specific feature recognition and the oriented shadow effect. Overall, this efficient and versatile platform paves an alternative path toward real-time quantum edge detection in applications including nondestructive bio-imaging, night vision and covert monitoring. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available