4.6 Article

Finite-element simulation for X-ray volume diffractive optics based on the wave optical theory

Journal

OPTICS EXPRESS
Volume 28, Issue 23, Pages 34973-34993

Publisher

Optica Publishing Group
DOI: 10.1364/OE.409961

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [11905242]
  2. Beijing Municipal Science & Technology Commission [Z191100001619005]
  3. High Energy Photon Source (HEPS)

Ask authors/readers for more resources

We developed a novel numerical simulation method for volume diffractive optics based on the Takagi-Toupin (TT) dynamical theory of diffraction. A general integral system of equations with a powerful and convenient distortion function was developed for finite-element analysis (FEA). The proposed framework is promising with regard to flexibility, robustness, and stability and has potential for solving dynamical X-ray diffraction problems related to diffractive optical elements of arbitrary shape and deformation. This FEA method was used for evaluating laterally graded multilayer (LGML) mirrors, and a general coordinate system was introduced to make the geometric optimization simple and effective. Moreover, the easily implemented boundary conditions inherent in FEA, combined with the analysis of the energy resolution derived from the TT theory, can make the simulation of volume diffractive optics, including LGML mirrors, more accurate. Thus, a comprehensive and highly efficient computation of LGML mirror diffraction problems was performed. The evaluation of the effects of the figure errors can provide practical guidance for the fabrication of X-ray optical elements. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available