4.6 Article

High-speed Ge/Si electro-absorption optical modulator in C-band operation wavelengths

Journal

OPTICS EXPRESS
Volume 28, Issue 22, Pages 33123-33134

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.405447

Keywords

-

Categories

Funding

  1. New Energy and Industrial Technology Development Organization [JPNP13004]

Ask authors/readers for more resources

We studied a high-speed electro-absorption optical modulator (EAM) of a Ge layer evanescently coupled with a Si waveguide (Si WG) of a lateral pn junction for high-bandwidth optical interconnect. By decreasing the widths of selectively grown Ge layers below 1 Lim, we demonstrated a high-speed modulation of 56 Gbps non-return-to-zero (NRZ) and 56 Gbaud pulse amplitude modulation 4 (PAM4) EAM operation in the C-band wavelengths, in contrast to the L-band wavelengths operations in previous studies on EAMs of pure Ge on Si. From the photoluminescence and Raman analyses, we confirmed an increase in the direct bandgap energy for such a submicron Ge/Si stack structure. The operation wavelength for the Ge/Si stack structure of a Ge/Si EAM was optimized by decreasing the device width below 1-mu m and setting the post-growth anneal condition, which would contribute to relaxing the tensile-strain of a Ge layer on a Si WG and broadening the optical bandwidths for Franz-Keldysh (FK) effect with SiGe alloy formation. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available