4.6 Article

Phase modulation depth setting technique of a phase-generated-carrier under AOIM in fiber-optic interferometer with laser frequency modulation

Journal

OPTICS EXPRESS
Volume 28, Issue 21, Pages 31700-31713

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.403448

Keywords

-

Categories

Funding

  1. National Major Science and Technology Projects of China [2017ZX02101006-005]
  2. National Natural Science Foundation of China [51605120, 51675138, 51875140, 61675058]

Ask authors/readers for more resources

The phase modulation depth (PMD) in phase-generated-carrier demodulation is determined by the laser frequency modulation amplitude and working distance of a fiber-optic interferometer and must be set at a certain value. Active setting of the amplitude is unsuitable, especially for high-speed modulation, owing to variations in the laser source tuning coefficients. Existing calculation schemes for passive setting cannot work both owing to carrier phase delay (CPD) and the accompanied optical-intensity modulation (AOIM). Herein, a modified phase modulation depth calculation and setting technique is proposed. Double photoelectric detection and signal division are optimized to eliminate AOIM using a fiber delay chain and phase-locked amplifier module. Fast Fourier-transform and look-up table methods are used to calculate phase modulation depth without adding the carrier, which is unaffected by CPD. A fiber-optic Michelson interferometer is constructed to verify the feasibility of the proposed method. The experimental results show that AOIM can be eliminated; moreover, PMD can be calculated and set precisely. The displacement deviation is less than 1.03 nm. The resolution of measurement is considerably lesser than 1 nm and nanoscale accuracy is achieved in displacement measurement. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available