4.7 Article

The pathoconnectivity network analysis of the insular cortex: A morphometric fingerprinting

Journal

NEUROIMAGE
Volume 225, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2020.117481

Keywords

Brain disorders; Insula; Gray matter alterations; Co-alteration network; Pathoconnectivity hub

Funding

  1. Fondazione Carlo Molo, Turin

Ask authors/readers for more resources

Brain disorders tend to affect the insular cortex, showing patterns of co-alteration with a dense network including predominantly cortical regions. Frontal lobe regions are more involved than occipital lobe, and co-alteration and co-activation patterns overlap significantly. This suggests alterations caused by brain disorders follow a network architecture logic, with brain hubs at the center of co-altered areas.
Brain disorders tend to impact on many different regions in a typical way: alterations do not spread randomly; rather, they seem to follow specific patterns of propagation that show a strong overlap between different pathologies. The insular cortex is one of the brain areas more involved in this phenomenon, as it seems to be altered by a wide range of brain diseases. On these grounds we thoroughly investigated the impact of brain disorders on the insular cortices analyzing the patterns of their structural co-alteration. We therefore investigated, applying a network analysis approach to meta-analytic data, 1) what pattern of gray matter alteration is associated with each of the insular cortex parcels; 2) whether or not this pattern correlates and overlaps with its functional meta-analytic connectivity; and, 3) the behavioral profile related to each insular co-alteration pattern. All the analyses were repeated considering two solutions: one with two clusters and another with three. Our study confirmed that the insular cortex is one of the most altered cerebral regions among the cortical areas, and exhibits a dense network of co-alteration including a prevalence of cortical rather than sub-cortical brain regions. Regions of the frontal lobe are the most involved, while occipital lobe is the less affected. Furthermore, the co-alteration and co-activation patterns greatly overlap each other. These findings provide significant evidence that alterations caused by brain disorders are likely to be distributed according to the logic of network architecture, in which brain hubs lie at the center of networks composed of co-altered areas. For the first time, we shed light on existing differences between insula sub-regions even in the pathoconnectivity domain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available