4.5 Review

Reevaluation of Astrocyte-Neuron Energy Metabolism with Astrocyte Volume Fraction Correction: Impact on Cellular Glucose Oxidation Rates, Glutamate-Glutamine Cycle Energetics, Glycogen Levels and Utilization Rates vs. Exercising Muscle, and Na+/K+Pumping Rates

Journal

NEUROCHEMICAL RESEARCH
Volume 45, Issue 11, Pages 2607-2630

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-020-03125-9

Keywords

Astrocyte; Glucose oxidation; Glycogen metabolism; Neuron; Volume fraction; Surface-to-volume ratio

Funding

  1. [R01 MH109159]
  2. [R01 NS087568]
  3. [R01 NS100106]

Ask authors/readers for more resources

Accurate quantification of cellular contributions to rates of substrate utilization in resting, activated, and diseased brain is essential for interpretation of data from studies using [F-18]fluorodeoxyglucose-positron-emission tomography (FDG-PET) and [C-13]glucose/magnetic resonance spectroscopy (MRS). A generally-accepted dogma is that neurons have the highest energy demands of all brain cells, and calculated neuronal rates of glucose oxidation in awake, resting brain accounts for 70-80%, with astrocytes 20-30%. However, these proportions do not take cell type volume fractions into account. To evaluate the conclusion that neuron-astrocyte glucose oxidation rates are similar when adjusted for astrocytic volume fraction (Hertz, Magn Reson Imaging 2011; 29, 1319), the present study analyzed data from 31 studies. On average, astrocytes occupy 6.1, 9.6, and 15% of tissue volume in hippocampus, cerebral cortex, and cerebellum, respectively, and regional astrocytic metabolic rates are adjusted for volume fraction by multiplying by 17.6, 11.4, and 6.8, respectively. After adjustment, astrocytic glucose oxidation rates in resting awake rat brain are 4-10 fold higher than neuronal oxidation rates. Volume-fraction adjustment also increases brain glycogen concentrations and utilization rates to be similar to or exceed exercising muscle. Ion flux calculations to evaluate sodium/potassium homeostasis during neurotransmission are not correct if astrocyte-neuron volume fractions are assumed to be equal. High rates of glucose and glycogen utilization after adjustment for volume fraction indicate that astrocytic energy demands are much greater than recognized, with most of the ATP being used for functions other than glutamate processing in the glutamate-glutamine cycle, challenging the notion that astrocytes 'feed hungry neurons'.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available