4.8 Article

Innate and plastic mechanisms for maternal behaviour in auditory cortex

Journal

NATURE
Volume 587, Issue 7834, Pages 426-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41586-020-2807-6

Keywords

-

Funding

  1. NSF Graduate Research Fellowship
  2. Leon Levy Foundation Postdoctoral Fellowship
  3. Brain & Behavior Research Foundation NARSAD Young Investigator Award
  4. BRAIN Initiative [NS107616]
  5. NICHD [HD088411, DC12557]
  6. McKnight Scholarship
  7. Pew Scholarship
  8. Howard Hughes Medical Institute Faculty Scholarship
  9. [NS074972]

Ask authors/readers for more resources

The onset of maternal behaviour in mice involves an interaction between intrinsic tuning of auditory cortical neurons and experience-dependent plasticity. Infant cries evoke powerful responses in parents(1-4). Whether parental animals are intrinsically sensitive to neonatal vocalizations, or instead learn about vocal cues for parenting responses is unclear. In mice, pup-naive virgin females do not recognize the meaning of pup distress calls, but retrieve isolated pups to the nest after having been co-housed with a mother and litter(5-9). Distress calls are variable, and require co-caring virgin mice to generalize across calls for reliable retrieval(10,11). Here we show that the onset of maternal behaviour in mice results from interactions between intrinsic mechanisms and experience-dependent plasticity in the auditory cortex. In maternal females, calls with inter-syllable intervals (ISIs) from 75 to 375 milliseconds elicited pup retrieval, and cortical responses were generalized across these ISIs. By contrast, naive virgins were neuronally and behaviourally sensitized to the most common ('prototypical') ISIs. Inhibitory and excitatory neural responses were initially mismatched in the cortex of naive mice, with untuned inhibition and overly narrow excitation. During co-housing experiments, excitatory responses broadened to represent a wider range of ISIs, whereas inhibitory tuning sharpened to form a perceptual boundary. We presented synthetic calls during co-housing and observed that neurobehavioural responses adjusted to match these statistics, a process that required cortical activity and the hypothalamic oxytocin system. Neuroplastic mechanisms therefore build on an intrinsic sensitivity in the mouse auditory cortex, and enable rapid plasticity for reliable parenting behaviour.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available