4.7 Article

Evolution and observational signatures of the cosmic ray electron spectrum in SN 1006

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 499, Issue 2, Pages 2785-2802

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/staa2989

Keywords

acceleration of particles; MHD; radiation mechanisms: non-thermal; shock waves; methods: numerical; cosmic rays

Funding

  1. European Research Council under ERC-CoG grant [CRAGSMAN-646955]

Ask authors/readers for more resources

Supernova remnants (SNRs) are believed to be the source of Galactic cosmic rays (CRs). SNR shocks accelerate CR protons and electrons which reveal key insights into the non-thermal physics by means of their synchrotron and gamma-ray emission. The remnant SN 1006 is an ideal particle acceleration laboratory because it is observed across all electromagnetic wavelengths from radio to gamma-rays. We perform 3D magnetohydrodynamics (MHD) simulations where we include CR protons and follow the CR electron spectrum. By matching the observed morphology and non-thermal spectrum of SN 1006 in radio, X-rays, and gamma-rays, we gain new insight into CR electron acceleration and magnetic field amplification. (1) We show that a mixed leptonic-hadronic model is responsible for the gamma-ray radiation: while leptonic inverse-Compton emission and hadronic pion-decay emission contribute equally at GeV energies observed by Fermi, TeV energies observed by imaging air Cherenkov telescopes are hadronically dominated. (2) We show that quasi-parallel acceleration (i.e. when the shock propagates at a narrow angle to the upstream magnetic field) is preferred for CR electrons and that the electron acceleration efficiency of radio-emitting GeV electrons at quasi-perpendicular shocks is suppressed at least by a factor ten. This precludes extrapolation of current 1D plasma particlein-cell simulations of shock acceleration to realistic SNR conditions. (3) To match the radial emission profiles and the gamma-ray spectrum, we require a volume-filling, turbulently amplified magnetic field and that the Bell-amplified magnetic field is damped in the immediate post-shock region. Our work connects microscale plasma physics simulations to the scale of SNRs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available